报告人:王冬岭
报告地点:腾讯会议ID: 332140408
报告时间:2025年06月17日星期二21:30-22:00
邀请人:
报告摘要:
Newton-type solvers are widely used for solving nonlinear systems of algebraic equations, yet efficiently addressing complex systems remains challenging due to unbalanced nonlinearities. To overcome this, we propose a residual-driven adaptive strategy that dynamically balances nonlinearities by assigning adaptive weight multipliers to each component. These multipliers increase according to a specific update rule as residuals grow, allowing the solver to select optimal step lengths and ensure balanced reductions across all components. Importantly, this strategy introduces minimal computational overhead and seamlessly integrates with existing Newton-type solvers, enhancing their efficiency and robustness. Through extensive testing on benchmark problems, including a chemical equilibrium system, a convective diffusion problem, and challenging nonlinear systems, our algorithm demonstrates superior computational efficiency and robustness, especially in handling systems with highly imbalanced nonlinearities.
主讲人简介:
王冬岭,湘潭大学数学学科教授、博导,主要从事保结构算法和分数阶方程数值方法的研究,主持国家自科基金天元、青年和面上项目;参加国家自科基金重点项目;获湖南省自然科学二等奖(2019年),陕西省青年科技奖(2020年),湖南省芙蓉计划青年项目(2023年);多次到香港中文大学、北京计算科学研究中心、中国科学院数学与系统研究院等高校做访问学者;已在SIAM J. Numer. Anal., Commun. Math. Sci.,J. Comput. Phy., J. Sci. Comput.,BIT Numer. Math.等计算数学杂志发表论文四十余篇.