当前位置: 首页 > 学术活动 > 正文
Physical perception deep adversarial network for restoring atmospheric turbulence degraded images
时间:2025年06月16日 08:34 点击数:

报告人:尹伟石

报告地点:数学与统计学院二楼会议室

报告时间:2025年06月17日星期二17:00-17:40

邀请人:高忆先

报告摘要:

In this talk, we propose a physical perception Deep Adversarial Network to recover turbulence-degraded images, gradually eliminating noise, geometric distortion, and blurring. The network accurately extracts distortion features by sensing the geometric distortion field in the degraded image and imposes stronger constraints during the correction process for better results. The feature extraction process utilizes dense residual selfattention blocks to effectively capture geometric distortions and other degradation effects, focusing on the correlation between local and overall features. By learning micro-local and macro global information, the network enhances its ability to perceive distortions and other degradation effects, ensuring coherence between local and overall restoration.

主讲人简介:

尹伟石,长春理工大学数学与统计学院副教授,硕士研究生导师。主要研究兴趣是数学物理反问题、机器学习算法的设计与理论分析等。在JCP,OE、JCAM,CICP,IPI等期刊发表论文20余篇,主持并参与国家自然科学基金、吉林省科技厅基金和吉林省教育厅基金6项。目前担任中国仿真学会不确定系统分析与仿真专委会委员和Math Review评论员等。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237