报告人:胡涛
报告地点:数学与统计学院415教室
报告时间:2025年06月09日星期一10:00-11:00
邀请人:刘秉辉
报告摘要:
We consider simultaneous variable selection and estimation for a deep neural network-based partially linear Cox model and propose a novel penalized approach. In particular, a two-step iterative algorithm is developed with the use of the minimum information criterion to ensure sparse estimation. The proposed method circumvents the curse of dimensionality while facilitating the interpretability of linear covariate effects on survival, and the algorithm greatly reduces the computational burden by avoiding the need to select the optimal tuning parameters that is usually required by many other popular penalties. The convergence rate and asymptotic properties of the resulting estimator are established along with the consistency of variable selection. The performance of the procedure is demonstrated through extensive simulation studies and an application to a myeloma dataset.
主讲人简介:
胡涛,首都师范大学数学科学学院教授,博士生导师。研究方向:生物统计、应用统计。在国内外学术刊物Journal of the American Statistical Association、 Biometrika、 Bioinformatics、 Biometrics、 Renewable Energy和《中国科学:数学》等上发表学术论文多篇。主持北京高校卓越青年科学家计划项目、国家自然科学基金面上项目、北京市自然科学基金重点研究专题等多个课题。