当前位置: 首页 > 学术活动 > 正文
Transfer Learning Under High-Dimensional Network Convolutional Regression Model
时间:2025年05月28日 17:23 点击数:

报告人:黄丹阳

报告地点:人民大街校区数学与统计学院415会议室

报告时间:2025年5月30日星期五10:00-11:00

邀请人:胡江

报告摘要:

Transfer learning enhances model performance by utilizing knowledge from related domains, particularly when labeled data is scarce. While existing research addresses transfer learning under various distribution shifts in independent settings, handling dependencies in networked data remains challenging. To address this challenge, we propose a high-dimensional transfer learning framework based on network convolutional regression (NCR), inspired by the success of graph convolutional networks (GCNs). The NCR model incorporates random network structure by allowing each node’s response to depend on its features and the aggregated features of its neighbors, capturing local dependencies effectively. Our methodology includes a two-step transfer learning algorithm that addresses domain shift between source and target networks, along with a source detection mechanism to identify informative domains. Theoretically, we analyze the lasso estimator in the context of a random graph based on the Erdős–Rényi model assumption, demonstrating that transfer learning improves convergence rates when informative sources are present. Empirical evaluations, including simulations and a real-world application using Sina Weibo data,  demonstrate substantial improvements in prediction accuracy, particularly when labeled data in the target domain is limited.

主讲人简介:

黄丹阳,中国人民大学统计学院教授,吴玉章青年学者,中国人民大学国家治理大数据和人工智能创新平台北京市消费大数据监测子实验室主任。主持国家自然科学基金面上项目、北京市社会科学基金重点项目等科研课题,入选北京市科协青年人才托举工程,曾获北京市优秀人才培养资助。从事复杂网络模型、大规模数据计算等方向的理论研究,关注统计理论在中小企业数字化发展中的应用。研究成果三十余篇发表于JRSSB、JASA、JOE、JBES等权威期刊。独著专著《大规模网络数据分析与空间自回归模型》入选“京东统计学图书热卖榜”。获北京高校青年教师教学基本功比赛二等奖、最受学生欢迎奖等多项省部级教学奖励。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237