当前位置: 首页 > 学术活动 > 正文
High-order structure-preserving-preserving relaxation Runge-Kutta methods for the nonlinear schrödinger equation
时间:2025年05月27日 12:09 点击数:

报告人:李东方

报告地点:腾讯会议ID: 978513822

报告时间:2025年05月29日星期四20:30-21:00

邀请人:数学与统计学院

报告摘要:

A novel family of high-order structure-preserving methods is proposed for the nonlinear Schrödinger equation. The methods are developed by applying the multiple relaxation idea to the different Runge--Kutta methods. It is shown that the multiple relaxation  Runge--Kutta methods can achieve high-order accuracy in time and preserve multiple original invariants at the discrete level. Several numerical experiments are carried out to support the theoretical results and illustrate the effectiveness and efficiency of the proposed methods.

主讲人简介:

李东方,华中科技大学数学与统计学院教授,博导,华中卓越学者,国家级高层次青年人才。主持国家级课题6项。主要从事微分方程数值解、机器学习和信号处理等领域的研究工作。尤其在微分方程保结构算法和分数阶微分方程的高效数值算法和理论上取得一些有意义的进展。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237