当前位置: 首页 > 学术活动 > 正文
Enhanced Fused Sufficient Representation Learning for Neuroimaging Data
时间:2025年05月22日 15:06 点击数:

报告人:潘文亮

报告地点:数学与统计学院415教室

报告时间:2025年05月24日星期六09:00-10:00

邀请人:刘秉辉

报告摘要:

Neuroimaging   data analysis presents significant challenges due to the high-dimensional,   complex, and spatially structured nature of the data. Effective   representation learning for neuroimaging must not only capture predictive   relationships but also preserve spatial and anatomical context to ensure   interpretability for clinical applications. However, most existing methods   overlook these critical aspects, resulting in representations that fail to   fully utilize structural information and lack clinical relevance. To address   these limitations, we propose a novel approach, Enhanced Fused Sufficient   Representation Learning (EFSRL), which integrates sufficient representation   learning with region detection. Our method's core is HSIC-FUSE, a measure   aggregating normalized Hilbert-Schmidt Independence Criterion (HSIC) values   across multiple kernels to promote sufficient representation without relying   on arbitrary kernel selection. These ensure both robustness and   interpretability, which are essential for clinical tasks. We also introduce a   dual-network architecture that alternates between learning representations and   selecting key regions, facilitating more accurate and meaningful   interpretations. Through extensive experiments on synthetic and real-world   medical imaging data, including the ADNI dataset, we demonstrate that EFSRL   outperforms existing methods. Our approach generates interpretable   representations tailored for various medical imaging tasks, highlighting its   potential for practical applications in healthcare.

主讲人简介:

潘文亮,国家级高层次青年人才,现任中国科学院数学与系统科学研究院副研究员及博士生导师,专注于统计学习算法、医学图像数据分析和度量空间的非参数方法等领域研究。在Annals of Statistics、Journal of the American Statistical Association等统计学顶级杂志上发表了20篇以上学术论文,获得2022年教育部高等学校科学研究优秀成果自然科学类二等奖(排名第二)。主持多项国家自然科学基金项目。同时,担任北京生物医学统计与数据管理研究会副理事长,以及中国现场统计研究会统计交叉科学研究分会副秘书长。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237