当前位置: 首页 > 学术活动 > 正文
E-BH based Interaction Identification for Classification with Ultra-high Dimensional Binary Features
时间:2025年05月22日 15:00 点击数:

报告人:安百国

报告地点:数学与统计学院415教室

报告时间:2025年05月24日星期六10:00-11:00

邀请人:刘秉辉

报告摘要:

In this study, we propose an interaction identification method for classification tasks involving ultra-high dimensional discrete binary features.  We introduce a parameter to characterize feature interactions, then derive an estimator for this parameter and provide a theoretical proof of its asymptotic normality.  Based on this asymptotic distribution, hypothesis testing is conducted to determine whether a given feature pair exhibits significant interaction. To address the multiple-testing challenge arising from the vast number of hypotheses, we employ the e-BH procedure to screen and select significant interacting feature pairs. Theoretical guarantees are established to ensure the screening procedure’s consistency and control of false discovery rates. Finally, by generalizing the classical naive Bayes classifier, we propose an e-BH naive Bayes classifier that integrates identified feature interactions. Numerical simulations and real-world data experiments demonstrate the superior performance of our proposed methodology in capturing complex feature dependencies and enhancing classification accuracy.

主讲人简介:

安百国,教授,博士生导师,首都经济贸易大学统计学院数理统计系主任。主要研究领域:统计机器学习,文本挖掘,高维复杂数据分析。学术成果大都发表在国际顶尖统计期刊《Journal of the American Statistical Association》、《Biometrika》和《COMPUTATIONAL STATISTICS & DATA ANALYSIS》、《Journal of Classification》、《数理统计与管理》等国内外著名统计期刊上。出版学术专著1部。主持国家自然科学基金2项、国家统计局重点项目1项,参与国家自然科学基金、国家社会科学基金、北京市自然科学基金等多项。主要社会兼职:中国商业统计学会常务理事;北京大数据协会理事、副秘书长等。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237