Schubert calculus has garnered significant attention in recent years due to its importance across various fields, including geometry, topology, combinatorics, and representation theory, particularly in the study of K-theoretic ring structure constants of the affine Grassmannian. Lam et al. introduced a family of symmetric functions to represent the K-theoretic homology of the affine Grassmannian, which we refer to as K-theoretic symmetric functions. Motivated by the analysis of Euler characteristics of vector bundles on the flag variety, Blasiak et al. demonstrated that a specific class of K-theoretic symmetric functions, known as K-k-Schur functions, forms a subset of the combinatorial family of symmetric functions called Catalan functions. This result offers a promising framework for much of the ongoing research on K-theoretic symmetric functions. In this talk, I will present our recent work on K-theoretic symmetric functions, in particular on K-k-Schur functions, in the context of their Catalan forms.
高兴,博士,现任兰州大学教授、博士生导师,萃英学者、甘肃省“陇原人才”。2010年7月在兰州大学数学与统计学院获得博士学位,毕业后留校任教至今。曾于2015年8月至2016年8月赴美国罗格斯大学访问交流,师从郭锂教授,研习罗巴代数理论;2023年10月至2024年10月期间在法国克莱蒙奥弗涅大学访学,师从Dominique Manchon教授,研习粗糙路径与正则结构理论。至今已在SCI期刊发表学术论文七十余篇,主持国家自然科学基金(数学天元基金、青年项目、面上项目)、甘肃省自然科学基金(面上及重点项目)等多个科研项目。曾获甘肃省自然科学奖二等奖,出版教材一本。