报告人:陈秀卿
报告地点:数学与统计学院619
报告时间:2025年05月08日星期四14:00-15:00
邀请人:李敬宇
报告摘要:
The Busenberg–Travis cross-diffusion system for segregating populations is approximated by the compressible Navier–Stokes–Korteweg equations on the torus, including a density-dependent viscosity and drag forces. The Korteweg term can be associated to the quantum Bohm potential. The singular asymptotic limit is proved rigorously using compactness and relative entropy methods. The novelty is the derivation of energy and entropy inequalities, which reduce in the asymptotic limit to the Boltzmann–Shannon and Rao entropy inequalities, thus revealing the double entropy structure of the limiting Busenberg–Travis system.
主讲人简介:
中山大学教授,博士生导师,主要从事非线性偏微分方程的应用研究,主持完成多项国家自然科学基金项目,在ARMA, CMP, SIMA, M3AS,JDE 等国际著名学术期刊上发表论文30多篇。