报告人:刘皓
报告地点:腾讯会议ID: 604189534
报告时间:2025年4月30日星期三09:00-10:00
邀请人:刘俊
报告摘要:
This presentation introduces the integral connection between deep learning networks and operator-splitting methods, demonstrating how popular architectures such as UNet can be construed as operator-splitting schemes for control problems. Combining this connection and the Potts model, we introduce PottsMGNet and the Double-Well Net as novel approaches to two-phase image segmentation. PottsMGNet employs an optimal control formulation to effectively encapsulate the linear and nonlinear operations characteristic of neural networks. It demonstrates improved robustness against noise by incorporating networks and mathematical models. Double-Well Net provides a data-driven way to learn the region-force term in the Potts model. This work aims to enhance the understanding of the interplay between deep learning architectures and mathematical modeling paradigms in of image processing.
主讲人简介:
刘皓博士现为香港浸会大学助理教授,2018年在香港科技大学取得博士学位,并于2018-2021年在佐治亚理工大学做博士后。在2021年,加入香港浸会大学。其主要研究方向包括图像处理,深度学习理论,偏微分方程识别以及数值偏微分方程。