报告人:陈健敏
报告地点:腾讯会议ID: 622857250 密码: 643769
报告时间:2025年05月01日星期四14:00-15:00
邀请人:扶先辉
报告摘要:
We study the singularity category of the Brieskorn-Pham singularity R associated with a Geigle-Lenzing projective space X of weight quadruple. We introduce the notion of 2-extension bundles on X, and then establish a correspondence between 2-extension bundles and a certain important class of Cohen-Macaulay R-modules studied by Herschend-Iyama-Minamoto-Oppermann. Furthermore, we construct a tilting object in the stable category of arithmetically Cohen-Macaulay bundles on X consisting of 2-extension bundles, whose endomorphism algebra is a 4-fold tensor product of certain Nakayama algebras. We also investigate the Picard group action on 2-extension bundles and obtain an explicit formula for the orbit number, which gives a positive answer to a higher version of an open question raised by Kussin-Lenzing-Meltzer. This is a joint work with Shiquan Ruan and Weikang Weng.
主讲人简介:
陈健敏, 厦门大学教授,研究方向为有限维代数表示理论&非交换代数几何,具体包括:有限维代数上的模范畴及导出范畴,加权射影线以及Geigle-Lenzing射影空间上的凝聚层范畴及导出范畴,斜群代数,群作用及等变范畴,倾斜理论,Frobenius-Perron理论,范畴的几何模型等。 主持完成国家自然科学基金面上项目多项,现主持国家自然科学基金面上项目一项。在Journal of Algebra, Journal of Pure and Applied Algebra, Acta Mathematica Sinic,International Mathematics Research Notices等杂志上发表论文二十余篇。