当前位置: 首页 > 学术活动 > 正文
Discrete-State Structured Epidemic Model and Its Application to the COVID-19 Pandemic
时间:2025年03月24日 09:36 点击数:

报告人:刘素莉

报告地点:数学与统计学院501教室

报告时间:2025年03月27日星期四10:00-11:00

邀请人:徐英祥

报告摘要:

In this talk, we propose a class of epidemic models in which infected individuals have a discrete set of states of infectivity and can switch among different states. The models also incorporate general incidence forms in which new infections are distributed among different disease states. We discuss the importance of the transmission-transfer network for infectious diseases. Under the assumption that the transmission-transfer network is strongly connected, adapting the improved graph-theoretical approach, we establish that the basic reproduction number R0 is a sharp threshold parameter. We will also discuss combining a simplified model and reported infected data of SARS-CoV-2 variants with Physical Information Neural Networks (PINNs) to simulate observed or unobserved dynamics, facilitate time-dependent parameter inferences, and make short-term predictions.

主讲人简介:

刘素莉,理学博士,吉林大学数学学院副教授、硕士生导师,入选吉林省高层次人才计划。主要从事生物数学、微分方程和深度学习的研究,在Physica D、PLOS Com. Bio.、Bull. Math. Bio.等国际期刊上累计发表学术论文十余篇,获2023年ICMAACS最佳论文奖。主持国家自然科学基金青年科学基金项目、吉林省教育厅优秀青年项目、吉林省科技厅青年成长科技计划项目、横向项目等5项,参加国家重点研发计划“变革性技术关键科学问题”专项项目子课题、国家自然科学基金面上项目各1项。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237