报告人:杨佳琦
报告地点:数学与统计学院二楼会议室
报告时间:2025年02月21日星期五10:00-11:00
邀请人:李勇、冀书关
报告摘要:
Differential equations modeling the motion of N charged particles are subject to small but complex delays and advances, defined implicitly by the solutions of the system. To understand the dynamics of such systems, we introduce functional perturbations—incorporating delays or advances—into ordinary differential equations. We demonstrate that near certain special solutions of the unperturbed equations, there exist solutions of the perturbed functional equations. Moreover, we establish smooth dependence of these solutions on parameters. We develop methods to quantify the size of allowable perturbations using a computer-assisted approach. Finally, we present some recent advances in the study of a point charge interacting with a small plasma, including results on existence and uniqueness of solutions to the Vlasov-Poisson system and their asymptotic behavior.
主讲人简介:
杨佳琦,同济大学,特聘研究员。于2021年在美国佐治亚理工学院获博士学位,2021-2022 年在美国布朗大学从事博士后研究,2022-2023 年在美国克拉克森大学任助理教授,现为同济大学特聘研究员。长期从事动力系统动力学行为的研究,与美国佐治亚理工学院、布朗大学、加拿大麦吉尔大学等动力系统、微分方程领域的权威学者保持着密切的学术合作,受邀在美国布朗大学、德州农工大学、加拿大多伦多大学等国外高校以及北美多地举办的会议上作报告10余次。