Dynamics of several modified Rosenzweig-MacArthur equations in constant and changing environments
报告人:黄继才
报告地点:腾讯会议ID: 861770431
报告时间:2025年01月14日星期二14:00-15:00
邀请人:范猛、曾志军
报告摘要:
In this talk, we study dynamics of the modified Rosenzweig-MacArthur equation in constant and changing environments. We first provide a more easily verifiable classification to determine the types and codimension of nilpotent singularities in a general planar system. Second, by using some algebraic and symbolic computation methods, we show that the highest codimension of a nilpotent focus is 4 and the modified RM equation can exhibit nilpotent focus bifurcation of codimension 4. Finally, we give a brief introduction of three other modified Rosenzweig-MacArthur equations.
主讲人简介:
黄继才,华中师范大学教授、博士生导师。2005年获中国科学院数学与系统科学研究院数学所博士学位。主要从事微分方程定性理论、分岔理论及其应用研究。在 JDE、Nonlinearity、JDDE、Physica D、PRSE-A、SIAP、SIADS、JMB、CHAOS等期刊发表学术论文六十余篇。文章 (SIAM J. Appl. Dyn. Syst. 2019) 被选为该刊 Featured Article (封面亮点文章),并被美国工业与应用数学学会在其官方主页《SIAM News》上专文报道。获得河南省自然科学奖二等奖、湖北省自然科学奖三等奖各1项。