The classical Kodaira embedding theorem asserts that a compact Kähler manifold with positive Ricci curvature is necessarily projective. Various generalizations of this theorem have been proposed for Kähler manifolds satisfying various positive or quasi-positive curvature conditions. In this lecture, I will first introduce some new results related to the projectivity of Kähler manifolds under certain quasi-positive curvature conditions, including quasi-positive $S_2^\perp, S_2^+,\mbox{Ric}_3^\perp, \mbox{Ric}_3^+$ or $2$-quasi-positive $\mbox{Ric}_k$. Subsequently, I will demonstate that a compact K\"ahler manifold with a special holonomy group is also projective if it satisfies certain non-negative curvature condition, including non-negative $S_2^\perp, S_2^+,\mbox{Ric}_3^\perp, \mbox{Ric}_3^+$ or $2$-non-negative $\mbox{Ric}_k$. This is a joint work with Yiyang Du.
牛艳艳,首都师范大学副教授。博士师从美国加州大学圣地亚哥分校的倪磊教授和首都师范大学的李庆忠教授。 近几年来一直从事多复变函数论和复几何分析等领域的学习和研究,包括正或非负曲率凯勒流形上的几何分析等。代表性论文发表在CPAM, Crell等国际著名权威学术期刊上。曾多次主持参与国家自然科学基金项目。