报告人:Rong Xiaochun
报告地点:腾讯会议ID: 3052755327
报告时间:2024年12月16日星期一10:00-11:00
邀请人:孔令令
报告摘要:
Let X be a compact Gromove-Hausdorff limit space of a sequence of n-manifolds, Mi, of sectional curvature secMi ≥ −1, or Ricci curvature RicMi ≥ −(n− 1) and all points in Mi satisfy a local rewinding Reifenberg condition, respectively. We will report a recent work: if Mi is homeomorphic, or diffeomorphic to a nil-manifold, respectively, then X is homeomorphic to, or diffeomorphic to a nil-manifold, respec-tively. As an application, we generalize a recent result by Bur´e-Naber-Semola that a compact GH-limit of a sequence of Mi homeomorphic to a torus of secMi ≥ −1 is a homeomorphic to torus.
主讲人简介:
戎小春现为美国罗格斯(Rutgers)大学数学系杰出教授。主要从事微分几何和度量黎曼几何的研究,在黎曼几何中的收敛和塌陷理论及其应用、正曲率流形几何和拓扑, Alexandrov几何等方面作出了若干基础性的贡献, 已在Ann. of Math, Invent. Math.等国际著名期刊上发表论文50余篇。戎小春教授是国际著名的度量黎曼几何专家, 国家级高层次领军人才, 曾获美国斯隆研究奖(Sloan Research Fellowships),美国数学会会士, 应邀在2002年国际数学家大会做45分钟报告。