报告人:乔雨
报告地点:腾讯会议ID: 540958473 密码: 241210
报告时间:2024年12月10日星期二14:00-15:00
邀请人:李春光、安庆楠
报告摘要:
Boundary groupoids can be used to model many analysis problems on singular spaces. In this talk, we first show that the $\eta$-term vanishes for elliptic differential operators on renormalizable boundary groupoids,which is based on the method of renormalized trace similar to that of Moroianu and Nistor. Next we introduce the notion of deformation from the pair groupoid. Under the assumption that a deformation from the pair groupoid of M exists for Lie groupoid G with the unit space M,we construct explicitly a deformation index map relating the analytic index on G and the index on the pair groupoid of M. We apply this map to boundary groupoids with two orbits to obtain index formulae for (fully) elliptic (pseudo)-differential operators with the aid of the index formula by M. J. Pflaum, H. Posthuma, and X. Tang. It is joint work with Bing Kwan So (Jilin University).
主讲人简介:
乔雨,陕西师范大学数学与统计学院副教授,硕士生导师;本科毕业于中国科学技术大学数学系,博士毕业于美国宾州州立大学(Pennsylvania State University)数学系;研究方向是非交换几何与算子代数;研究成果发表在 J. of Noncommut. Geom.、J. Operator Theory、IEOT、Forum Math. 等杂志上;主持并完成国家自然科学基金面上项目、青年项目、数学天元、陕西省科技厅面上项目各一项。