当前位置: 首页 > 学术活动 > 正文
Critical Mass Phenomena of Ground States in Stationary Second Order Mean-field Games Systems
时间:2024年12月06日 21:21 点击数:

报告人:曾小雨

报告地点:腾讯会议ID: 321219843 密码: 94127

报告时间:2024年12月09日星期一10:00-11:00

邀请人:冀书关

报告摘要:

Mean-field games (MFG) systems serve as paradigms to qualitatively describe the game among a huge number of rational players. In this talk, some intricate connections between MFGs and Schrodinger equations are mentioned, then the existence and asymptotic profiles of ground states to MFG systems in the mass critical exponent case are extensively discussed. First of all, we establish the optimal Gagliardo-Nirenberg type inequality associated with the potential-free MFG system. Then, under some mild assumptions on the potential function, we show that there exists a critical mass M* such that the MFG system admits a least energy solution if and only if the total mass of population density M is less than M*. Moreover, the blow-up behavior of energy minimizers are captured as M increases and converges to M*. In particular, given the precise asymptotic expansions of the potential, we establish the refined blow-up behavior of ground states. While studying the existence of least energy solutions, we analyze the maximal regularities of solutions to Hamilton-Jacobi equations with superlinear gradient terms. This is a joint work with Marco Cirant, Fanze Kong and Juncheng Wei.

主讲人简介:

曾小雨,武汉理工大学数学科学中心教授,国家级高层次青年人才。研究方向为非线性泛函分析与椭圆型偏微分方程,在玻色-爱因斯坦凝聚相关变分问题以及抛物方程爆破解构造方面取得系列进展。主要成果发表在Trans.AMS、JFA、Ann. Inst. H. Poincar'eAnal. Non Lin'eaire、Nolinearity等国际期刊上。主持国家自然科学基金3项,作为核心成员参与国家自然科学基金重点项目。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237