报告人:谷世杰
报告地点:腾讯会议ID: 649416935 密码: 121212
报告时间:2024年12月12日星期四15:00-16:00
邀请人:陈亮、裴东河、张发泽
报告摘要:
In 1981, Gromov asked whether there exist simply connected topological manifolds, other than Euclidean space, that admit a metric of non-positive curvature in a synthetic sense. Since CAT(0) spaces are contractible, it follows from the classification of surfaces that any CAT(0) 2-manifold is Euclidean. In dimension 3, by combining results of Brown and Rolfsen, CAT(0) manifolds are homeomorphic to R^3. Recently, Lytchak, Nagano, and Stadler proved that CAT(0) 4-manifolds are Euclidean. In this talk, I will discuss Gromov's question and introduce spaces of (global) non-positive curvature in the sense of Busemann, abbreviated as BNPC spaces. This notion is what Gromov originally intended by "synthetic sense." I will show that the results above can be extended to BNPC manifolds. This is joint work with Tadashi Fujioka.
主讲人简介:
谷世杰,2018 年获美国威斯康星大学博士学位。2019-2022 年曾任美国中央康涅狄格州立大学助理教授。2022 年 7 月至今任东北大学海外百人青年特聘教授,博士生导师。主要从事几何拓扑学的研究, 涉及流形的拓扑理论、wild 拓扑学与度量几何学。