报告人:王晁
报告地点:腾讯会议ID: 649416935 密码: 121212
报告时间:2024年12月12日星期四14:00-15:00
邀请人:陈亮、裴东河、张发泽
报告摘要:
Let S be a closed Riemann surface, and let G be a finite subgroup of the automorphism group of S. It is known that there exists a smooth G-equivariant embedding from S to some Euclidean space E, where G acts orthogonally on E. We will discuss some results about the minimal possible dimension n of such E. For example, we will show that n is at most |G| if |G|>4. Also, for the Hurwitz action on the Klein quartic, we have n=8. This is a joint work with Zhongzi Wang.
主讲人简介:
王晁,2014年博士毕业于北京大学数学科学学院,现为华东师范大学研究员。主要研究方向为低维拓扑,已发表SCI论文十余篇,涉及纽结论、动力系统、极小曲面等领域。