The widespread integration of Artificial Intelligence (AI) driven algorithms into various aspects of modern society raises fundamental questions about their impact on decision-making processes. This talk addresses a crucial inquiry: does the integration of AI improve human decision-making compared to human or AI alone?
I will introduce a causal inference framework to evaluate three distinct decision-making paradigms: human-alone, human-with-AI, and AI-alone systems. Utilizing standard classification metrics based on potential outcomes, the evaluation will consider both the prediction accuracy and the fairness of these systems. Furthermore, I will introduce strategies to improve decision-making by combining different systems and optimizing AI algorithms.
蒋智超,中山大学数学学院教授,本科博士均毕业于北京大学数学科学学院,2016年至2019年在普林斯顿大学和哈佛大学从事博士后研究,2019年至2022年在美国麻省大学阿默斯特分校担任助理教授。研究领域为因果推断。研究的主要兴趣为主分层分析、工具变量、测量误差和缺失数据,以及因果推断方法在生物医学以及社会科学中的应用。