报告人:张建平
报告地点:腾讯会议ID: 302656240
报告时间:2024年12月09日星期一09:00-10:00
邀请人:刘俊
报告摘要:
Remote sensing images and medical imaging are essential for many applications, but their quality can usually be degraded due to limitations in imaging technology and complex imaging environments. To address this, various imaging methods have been developed to restore sharp and high-quality images from degraded observational data. However, most traditional model-based imaging methods usually require predefined hand-crafted prior assumptions, which are difficult to handle in complex applications. On the other hand, deep learning-based methods are often considered as black boxes, lacking transparency and interpretability. In this talk, we first present a new blind deblurring learning framework and high-order progressive SR network that utilizes alternating iterations of shrinkage thresholds. Then, we present a novel dual-domain unified framework that offers a great deal of flexibility for multi-sparse-view CT reconstruction through a single model. Experimental results on real and synthetic remote sensing image and medical image datasets demonstrate the superiority of our methods compared to existing deblurring methods.
主讲人简介:
张建平,男,理学博士,教授,博士生导师,博士毕业于大连理工大学,于2013年2月加入湘潭大学数学与计算科学学院。先后在在香港城市大学、利物浦大学数学系和 CMIT做过 Reserch Assistant 以及 Research Associate 博士后工作;也在利物浦大学、香港科技大学和香港城市大学做过短期的学术访问。长期致力于计算机视觉及图像处理中的数学问题、机器学习、深度学习及其应用方面的研究,相应成果以第一作者或通讯作者发表在 SIAM J.Imaging Sci.、SIAM J.Numer.Anal.、IEEE JBHI、IEEE TCI、J Comput.Phys.、Inverse Probl.Imag.、BSPC等国际重要刊物上;主持完成国家自然科学基金青年、面上项目共 2 项、湖南省科技厅及教育厅省部级项目 3 项;作为主要骨干成员或子课题负责人参与科技部遥感重大项目、湖南省科技厅重大应用基础研究与成果转化及产业化医学项目、湖南省科技厅高新技术发展及产业重点研发项目、湖南省科技厅"社会发展领域重点研发项目"、国家自然科学基金与省部级项目近 10 项。现为湘潭大学韶峰学者"学术骨干"、湘潭大学优秀研究生导师团队和湖南省优秀研究生导师团队成员等。