Asymptotic Behavior of Singular Values of Some Operators on Weighted Bergman Spaces
报告人:王晓峰
报告地点:腾讯会议ID: 224547321 密码: 241128
报告时间:2024年11月28日星期四14:00-15:00
邀请人:李春光、安庆楠
报告摘要:
In this talk, I will report some recent researches on the asymptotic behavior of singular values of some operators on a large class of weighted Bergman spaces, including Toeplitz operators, Hankel operators and composition operators. We use the non-increasing rearrangement of IDA function with respect to a suitable measure to characterize the asymptotic behavior of the singular values sequence of Hankel operatorsacting on a large class of weighted Bergman spaces. As a corollary, we show that the simultaneous asymptotic behavior of and can be characterized in terms of the asymptotic behavior of non-increasing rearrange-ment of mean oscillation function. Moreover, in the weighted Fock spaces, we demon -strate the Berger-Coburn phenomenon concerning the membership of Hankel opera-tors in the weak Schatten class.
主讲人简介:
王晓峰,广州大学数学与信息科学学院教授、博士生导师。长期从事基础数学研究工作,主要研究方向为算子理论与算子代数。曾到美国进行一年的学术访问,研究成果发表于Math. Z.,J. Geom. Anal., J. Oper. Theo., 中国科学等及被Trans. AMS录用,先后主持国家自然科学基金4项,获得过霍英东青年教师奖、广州市优秀教师等荣誉。