当前位置: 首页 > 学术活动 > 正文
Inverse spectral problems for the radial Schrödinger operators
时间:2024年11月14日 20:30 点击数:

报告人:徐新建

报告地点:腾讯会议ID: 286443159 密码: 241118

报告时间:2024年11月18日星期一10:00-11:00

邀请人:李宇飞

报告摘要:

We study an inverse spectral problem for the radial Schrödinger operators on the unit interval. This problem consists in the recovery of the potential on a subinterval $(0, a)$, $a\leq 1$, from eigenvalues corresponding to the boundary value problems with different boundary conditions. We obtain a sufficient condition for the unique specification of the radial Schrödinger operator by a set of eigenvalues and a part of the potential function on $(a, 1)$ in terms of the cosine system closedness. The Borg-type and the Hochstadt-Lieberman type results are obtained as corollaries of our main result. The main tool of our proof technique is the singular transformation operator representation for the solution of the radial Schrödinger equation.

主讲人简介:

徐新建,南京理工大学数学与统计学院博士后,研究方向为微分算子谱论及其逆问题。目前在扰动Bessel算子逆谱问题及逆共振散射问题、传输特征值逆问题、非局部条件Sturm-Liouville算子逆问题等方面获得一些研究成果,在Sci. China Math.、JDE、Inverse Probl. Imaging等国内外期刊发表相关论文多篇。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237