Estimates for stress concentration between two adjacent rigid inclusions in stationary Stokes/Navier-Stokes flow
报告人:李海刚
报告地点:数学与统计学院二楼会议室
报告时间:2024年11月18日星期一16:00-17:00
邀请人:冀书关、高忆先
报告摘要:
Particles suspending in complex fluids usually result in complicated flow behavior. It is vitally important to study the stress enhancements in the narrow region between two rigid particles. In this talk, we will show the pointwise upper bounds of the gradient and the second-order partial derivatives for the stationary Stokes/Navier-Stokes flow as the distance between two rigid particles approaches to zero in a bounded domain in dimension two and three. The optimality of these blow-up rates is demonstrated by establishing the corresponding lower bounds.
主讲人简介:
李海刚,北京师范大学数学科学学院教授、博士生导师,国家级高层次青年人才。主要从事材料科学中的偏微分方程理论研究,在复合材料中的Babuška问题、流-固耦合悬浮问题等方面取得一系列有国际影响的重要成果。在Adv Math、ARMA、JMPA、TAMS、JFA、AIHP-NL、SIMA、SIAP、CV&PDEs、IMAJMA等国际权威数学杂志发表论文40余篇,解决了偏微分方程理论与数值计算中的若干难题, 获得教育部自然科学二等奖、北京市自然科学二等奖(第一完成人)等省部级奖励。