Principal spectral theory and variational characterizations for cooperative systems with nonlocal and coupled diffusion
报告人:苏远航
报告地点:腾讯会议ID: 649835658 密码: 605605
报告时间:2024年11月18日星期一15:00-16:00
邀请人:李敬宇
报告摘要:
We study a general class of cooperative systems with nonlocal diffusion operators that may or may not be coupled. These systems are either “strong”in cooperation or“strong”in the coupling of the nonlocal diffusion operators, and in the former case, diffusion may not occur in some of the components of the system at all. We prove results concerning the existence, uniqueness, multiplicity, variational characterizations of the principal eigenvalue of the system, the spectral bound, the essential spectrum, and the relationship between the sign of principal eigenvalue and the validity of the maximum principle. We do so using an elementary method, without resorting to Krein-Rutman theorem. This is a joint work with professor Xuefeng Wang and doctor Ting Zhang.
主讲人简介:
大连理工大学数学科学学院副教授,博士生导师。2021年6月,博士毕业于兰州大学,获“2021届甘肃省优秀博士毕业生”荣誉称号;2019年9月至2021年3月,到美国俄亥俄州立大学联合培养一年半;2021年8月至2024年1月,在香港中文大学(深圳)从事博士后研究。主要从事偏微分方程与动力系统的研究,研究兴趣包括:非局部扩散方程、非局部特征值问题和非均匀干细胞再生模型等。围绕这些问题已在 J. Math. Pures Appl.、J. Differential Equations、Anal. Appl. 等杂志上发表论文5篇。