当前位置: 首页 > 学术活动 > 正文
Effect of Cause and Cause of Effect
时间:2024年11月08日 19:29 点击数:

报告人:贾金柱

报告地点:腾讯会议ID: 313250949

报告时间:2024年11月12日星期二10:00-11:00

邀请人:王晓飞

报告摘要:

In this talk, I will talk on two concepts: causal effects (Effect of Cause) and posterior causal effects (Cause of Effect).

For causal effects, we study covariate adjusted average treatment effect estimate problem. We specify a working model for the potential outcome and the covariates. We show that even when the working model is misspecified, the   difference estimator for the average treatment effect is consistent and asymptotically normal. We propose a well designed generalized estimation equation method, with which the estimated average treatment effect is always   more efficient than the simple difference in mean estimator, under mild conditions. Extensive simulation studies verify our theoretical results.

For posterior causal effects, I will first introduce a few historical work on this concept. For the case with a single causal variable, Dawid et al. (2014) defined the probability of causation and Pearl (2000) defined the probability of necessity to assess the causes of effects. For a case with multiple causes which may affect each other, we define the posterior total and direct causal effects based on the evidences observed for post-treatment variables, which could be viewed as measurements of causes of effects. The posterior causal effects involve the probabilities of counterfactual variables. Thus, like probability of causation, probability of necessity and the direct causal effects, the identifiability of the posterior total and direct causal effects requires more assumptions than the identifiability of the traditional causal effects conditional on pre-treatment variables.We present assumptions required for the identifiability of the posterior causal effects and provide identification equations. Further, when the causal relationships among multiple causes and an endpoint may be depicted by causal networks, we can simplify both the required assumptions and the identification equations of the posterior total and direct causal effects. Finally, using numerical examples, we compare the posterior total and direct causal effects with other measures for evaluating the causes of effects and the population attributable risks.

主讲人简介:

贾金柱,北京大学公共卫生学院长聘副教授/研究员,博士生导师,生物统计系副主任。2009年1月北京大学博士毕业。 2009年1月至2010年12月,UC Berkeley 博士后。2011年1月至2018年1月任职于北京大学数学科学学院概率统计系和北京大学统计中心,期间访问哈佛大学一年。2018 年2月加入北京大学公共卫生学院。主要研究方向是因果推断、生物统计、高维统计推断、大数据分析、统计机器学习等。在变量选择方法的理论研究、高维数据和大数据统计学习的应用以及因果推断等领域发表论文多篇。担任现场统计学会因果推断分会副理事长、中国概率统计统计学会副秘书长、青年统计学家协会常务理事、北京应用统计学会常务理事、现场统计研究会计算统计分会理事、现场统计研究会高维数据统计会理事。论文发表在统计学四大期刊《Annals of Statistics》《JRSSB》《Biometrika》等。主持基金委青年项目、面上项目资助各1项,主持军委科技委重大项目资助1项。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237