Generalized tracially approximated C*-algebras and crossed products by group actions with the weak tracial Rokhlin property
报告人:方小春
报告地点:腾讯会议ID: 279339845 密码: 241112
报告时间:2024年11月12日星期二14:00-15:00
邀请人:李春光、安庆楠
报告摘要:
In this talk, we first recall the notion of generalized tracial approximation introduced several years ago. This notion generalizes both tracial approximation and Phillips's centrally large subalgebras. We give some hereditary properties of generalized tracial approximation C*-algebras. Some results are new, and some results were obtained previously. Next, we focus on the structure of crossed products by finite group actions with the weak tracial Rokhlin property. Let be an infinite-dimensional simple unital C*-algebra with stable rank one, and let be an action of a finite group on with the weak tracial Rokhlin property. Phillips asked whether the crossed product C* has stable rank one. We give an affirmative answer to this question under the assumption that A is separable and has strict comparison. Last, we introduce the notion of weak tracial Rokhlin property for compact group actions on simple unital C*-algebras and give some preservation results.
主讲人简介:
方小春,同济大学数学科学学院教授,博士生导师,主要从事算子代数及其应用等方面研究工作,涉及: C*动力系统、 C*代数分类、图C*代数、 算子代数的K群与KK群、群胚C*代数、非交换几何、非交换概率论、算子理论及其应用等。其曾于1997年访问加拿大Fields所与G.A.Elliott教授进行合作研究,于2003年在德国Muenster大学数学研究所访问J. Cuntz教授。方教授科研成果丰硕,部分工作在Journal of Functional Analysis、 Ergodic Theory and Dynamical Systems、 Integral Equations and Operator Theory、 Bulletin of the London Mathematical Society、 Proceeding of America Mathematical Society等期刊。