Uniqueness of distributional solutions to 2D vorticity Navier-Stokes equation and its nonlinear Markov process
报告人:张登
报告地点:腾讯会议ID: 894145258
报告时间:2024年10月31日星期四14:00-15:00
邀请人:高鹏
报告摘要:
In this talk we will show the uniqueness of distributional solutions to 2D Navier-Stokes equations in vorticity form. As a consequence, one gets the uniqueness of probabilistically weak solutions to the corresponding McKean-Vlasov stochastic differential equations. It is also proved that for initial conditions with density in L4 these solutions are strong. In particular, one derives a stochastic representation of the vorticity of the fluid flow in terms of a solution to the McKean-Vlasov SDE. Finally, we show that the family of path laws of the solutions to McKean-Vlasov SDE form a nonlinear Markov process in the sense of McKean. This is in joint with Viorel Barbu and Michael Roeckner.
主讲人简介:
张登,上海交通大学数学科学学院教授,博士生导师,获得国家级高层次青年人才,上海市启明星项目等。张登主要从事随机偏微分方程及其相关领域的研究,在随机薛定谔方程的全局适定性、多波包爆破解和多孤波解,流体方程的弱解非唯一性等方面取得了研究成果,相关成果发表在AOP, ARMA, CMP, JMPA, PTRF, TAMS等国际期刊。