当前位置: 首页 > 学术活动 > 正文
Uniqueness of distributional solutions to 2D vorticity Navier-Stokes equation and its nonlinear Markov process
时间:2024年10月29日 13:03 点击数:

报告人:张登

报告地点:腾讯会议ID: 894145258

报告时间:2024年10月31日星期四14:00-15:00

邀请人:高鹏

报告摘要:

In this talk we will show the uniqueness of distributional solutions to 2D Navier-Stokes equations in vorticity form. As a consequence, one gets the uniqueness of probabilistically weak solutions to the corresponding McKean-Vlasov stochastic differential equations. It is also proved that for initial conditions with density in L4 these solutions are strong. In particular, one derives a stochastic representation of the vorticity of the fluid flow in terms of a solution to the McKean-Vlasov SDE. Finally, we show that the family of path laws of the solutions to McKean-Vlasov SDE form a nonlinear Markov process in the sense of McKean. This is in joint with Viorel Barbu and Michael Roeckner.

主讲人简介:

张登,上海交通大学数学科学学院教授,博士生导师,获得国家级高层次青年人才,上海市启明星项目等。张登主要从事随机偏微分方程及其相关领域的研究,在随机薛定谔方程的全局适定性、多波包爆破解和多孤波解,流体方程的弱解非唯一性等方面取得了研究成果,相关成果发表在AOP, ARMA, CMP, JMPA, PTRF, TAMS等国际期刊。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237