报告人:常文
报告地点:腾讯会议ID: 154368560
报告时间:2024年10月23日星期三16:00-17:00
邀请人:扶先辉
报告摘要:
It is proved that any almost tilting module over a gentle algebra is partial tilting, that is, it can be completed as a tilting module. Furthermore, it has at most $2n$ complements, which confirms a (deformed)conjecture of Happel for the case of gentle algebras. At the same time, for any $n\geq 3$ and $1\leq m \leq n-2$, there always exists a connected gentle algebra with rank $n$ and a pre-tilting module over it with rank $m$ which is not partial tilting. The tool we use is the surface model associated with the module category of a gentle algebra. The main technique is doing inductions by cutting the surface, which is expected to be useful elsewhere.
主讲人简介:
常文,陕西师范大学副教授,2015年博士毕业于清华大学,曾受国家留学基金委资助于2018年访问美国康涅狄格大学。研究兴趣包括代数表示论、同调代数、丛代数、拓扑Fukaya范畴等。主持完成国家自然科学基金青年项目和陕西省高层次人才引进计划青年项目各一项,现主持国家自然科学基金面上项目一项。在Selecta Math., Israel J. Math., Math. Z., Canad. J. Math., J. Algebra等杂志上发表论文十余篇。