报告人:苑罡男
报告地点:数学与统计学院二楼会议室
报告时间:2024年10月20日星期日13:30-14:30
邀请人:祖建
报告摘要:
Gaussian Mixture Model(GMM) is one of the distribution models that can produce highly accurate estimates of any density. Inspired by Fourier transform, we purposed a Gaussian Mixture Model Expansion (GMME) that expand any density with a set of base Gaussian distributions. We demonstrate that using GMME to approximate any form of distribution, the approximation error is constrained. Based on our concept, we create a learning algorithm and compare it directly to the Wasserstein approach for use with neural networks. In this talk we will briefly walk through our work and showcase some applications.
主讲人简介:
苑罡男,中国科学技术大学、大湾区高等研究院博士后。 博士毕业于澳门大学,主要的研究方向是随机微分方程、机器学习算法及其在金融时序数据预测、图像生成等方向的应用。