当前位置: 首页 > 学术活动 > 正文
Gauss Newton method for phaseless recovery
时间:2024年10月16日 17:29 点击数:

报告人:高冰

报告地点:腾讯会议ID: 8898648458 密码: 115119

报告时间:2024年10月17日星期四15:00-16:00

邀请人:徐东坡

报告摘要:

In this talk, we introduce a concrete algorithm for phase retrieval problem, which aims to recover a signal from phaseless measurements. In short, the algorithm, which we refer to as Gauss-Newton method, can be divided into two stages. In the first stage, the algorithm devotes to find a good initial estimation. The second stage of the algorithm is to update the iteration point by Gauss-Newton iteration. Here the initialization method can provide a good initial guess by using optimal number of measurements. For real-valued signals, we proved that a re-sampled version of the algorithm quadratically converges to the global optimal solution with the number of random measurements being nearly minimal.

主讲人简介:

高冰,南开大学数学科学学院讲师,于2017年获得中科院数学与系统科学研究院博士学位,导师许志强研究员。2017-2019在香港科技大学从事博士后研究。主要从事压缩采样与信号处理方面的研究工作。部分工作发表在IEEE Trans. On Signal Processing, Applied and Computational Harmonic Analysis, Journal of Fourier Analysis and Applications, Advance in Applied Mathematics。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237