Numerical analysis of splitting-up method for nonlinear filtering problem with diffusion and point process observations
报告人:邹永魁
报告地点:腾讯会议: 783853666 密码: 1750
报告时间:2024年09月23日星期一10:00-11:00
邀请人:
报告摘要:
This work aims to develop and analyze a comprehensive discretized splitting-up numerical scheme for the Zakai equation. This equation arises from a nonlinear filtering problem, where observations incorporate noise modeled by point processes and Wiener processes. Initially, we introduce a regularization parameter and employ a splitting-up approach to break down the Zakai equation into two stochastic differential equations and a partial differential equation. Subsequently, we employ a finite difference scheme for the temporal dimension and the spectral Galerkin method for the spatial dimension to achieve full discretization of these equations. This results in a numerical solution for the Zakai equation using the splitting-up technique. We demonstrate that this numerical solution converges to the exact solution with a convergence order of $\frac12$. Additionally, we conduct several numerical experiments to illustrate and validate our theoretical findings.
主讲人简介:
邹永魁,男,1967年生人,教授,博士生导师,中共党员。1985年面试保送进入吉林大学数学系学习,1993年在吉林大学数学研究所获得博士学位,毕业后留校任教至今。1994-1996年间赴德国科隆大学和比勒菲尔德大学从事博士后研究,之后又先后访问美国奥本大学、密西根州立大学、香港科技大学和香港浸会大学等学校进行合作研究。现任吉林国家应用数学中心副主任。主要从事随机偏微分方程数值方法的研究,在 J. Sci. Comput.,CiCP,J. Nonlinear Sci., Nonlinearity, Z. Angew. Math. Phys. 等学术期刊上发表学术论文50余篇。主持和参加国家自然科学基金等项目16项。2005年被评为教育部新世纪优秀人才,2007年被评为吉林省优秀教师。多年来,一致坚持在教学第一线,培养了一批批优秀的毕业生。