当前位置: 首页 > 学术活动 > 正文
High Dimensional Mean Test for Time Series
时间:2024年08月21日 16:57 点击数:

报告人:王潇逸

报告地点:惟真楼523

报告时间:2024年08月22日星期四11:15-12:00

邀请人:郑术蓉

报告摘要:

This study considers testing for one-sample mean differences in high-dimensional temporally dependent data. To eliminate the bias caused by the temporal dependence in the time series observations, we propose a new statistic to estimate the squared Euclidean distance between the two means that excludes diagonal-products of data vectors of temporally close time points. We derive the asymptotic normality of the proposed statistic for the high-dimensional setting. A numerical simulation and a real-data analysis on the return and volatility of S&P 500 stocks before and after the 2008 financial crisis demonstrate the performance and utility of the proposed test.

主讲人简介:

王潇逸,北京师范大学珠海校区统计系讲师,2021年毕业于东北师范大学,主要研究方向为高维统计推断、大维随机矩阵理论,在Statistica Sinica、TEST等多个期刊上发表文章。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237