Compact difference finite element method for convection-diffusion equations on cylindrical domains
报告人: 冯新龙
报告地点:数学与统计学院 二楼会议室
报告时间:2024年08月17日星期六16:30-17:30
邀请人:徐英祥
报告摘要:
In this work, a difference finite element (DFE) method is proposed for solving 3D steady convection-diffusion equations that can maximize good applicability and efficiency of both FDM and FEM. The essence of this method lies in employing the centered difference discretization in the $z$-direction and the FE discretization based on the $P_1$ conforming elements in the $(x,y)$ plane. This allows us to solve PDEs on complex cylindrical domains at lower computational costs compared to applying the 3D FEM. We derive the stability estimates for the DFE solution and establish the explicit dependence of $H_1$ error bounds on the diffusivity, convection field modulus, and mesh size. Moreover, a compact DFE method is presented for the above problems. Finally, we provide numerical examples to verify the theoretical predictions and showcase the accuracy of the proposed method.
主讲人简介:
冯新龙,二级教授,博士生导师。享受国务院特殊津贴专家,教育部重大人才工程特聘教授。研究领域为计算数学、计算流体力学、不确定性量化、人工智能与机器学习等。拥有中国准精算师资格,曾担任中国核学会计算物理学会理事,中国计算数学学会理事,中国数学会理事,目前担任中国高等教育学会教育数学专业委员会常务理事等。曾荣获自治区自然科学奖一等奖,新疆青年科技奖等。主持完成10余项国家级和省部级科研项目。在国际著名期刊合作发表学术论文100余篇。