In this talk, I will begin with a brief introduction to the U(h)-free module theory over Lie and associative algebras with triangular decompositions, and present some recent results in this area. In the second part, I will introduce Nilsson's work on U(h)-free $ sl_2$-modules and discuss the decompositions of the tensor products between these modules and finite-dimensional simple modules. Finally, I will talk about the U(h)-free modules over the Yangian $ Y(sl_2)$. The review part is mostly based on works by Y. Cai, X. Guo, G. Liu, R. Lv, J. Nilsson, H. Tan, K. Zhao, and others.
陈洪佳,中国科学技术大学数学科学学院教授、博士生导师,国家级高层次青年人才。主要从事李代数、量子群的结构和表示理论的研究,在《Trans. Amer. Math. Soc.》、《J. Lond. Math. Soc.》、《Math. Z.》、《Forum Math.》以及《J. Algebra》等著名期刊上发表学术论文近30篇。