报告人:李猛
报告地点:腾讯会议ID: 451-916-977
报告时间:2024年08月02日星期五09:50-10:35
邀请人:
报告摘要:
We introduce a virtual element method in space for the nonlinear Ginzburg–Landau equation, while a linearized time-variable-step second order backward differentiation formula (BDF2) is adopted in time. The error splitting approach is used to prove the unconditional optimal error estimate of the derived scheme under the mild restriction on the ratio of adjacent time-steps ratios. By using the techniques of the discrete complementary convolution (DOC) kernels and the discrete complementary convolution (DCC) kernels, we obtain the boundedness and error estimates of the solution of time-discrete system.
主讲人简介:
李猛,2017.7 毕业于华中科技大学数学与统计学院,主要研究方向为偏微分方程数值解,在IMA Journal of Numerical Analysis, Computer Methods in Applied Mechanics and Engineering, Journal of Computational Physics, Journal of Scientific Computing等发表学术论文五十余篇。主持中国博士后科学基金特别资助项目(站中)、国家自然科学基金青年项目、中国博士后面上项目等。曾获河南省自然科学奖二等奖等。