报告人:晏挺
报告地点:数学与统计学院415教室
报告时间:2024年07月08日星期一10:00-11:00
邀请人:刘秉辉
报告摘要:
In this talk, we present likelihood ratio tests in some random graph models including the beta model for undirected graphs, the Bradley-Terry model for paired companions and the p0 model for directed graphs. For two growing dimensional null hypotheses- a specified null and a homogenous null, we reveal high dimensional Wilks' phenomena that the normalized log-likelihood ratio statistic converges in distribution to a standard normal distribution when the number of being tested parameters goes to infinity. For the homogenous null with a fixed number of parameters, we establish the Wilks-type theorem that the log-likelihood ratio test converges in distribution to a chi-square distribution as the number of nodes goes to infinity.
主讲人简介:
晏挺,华中师范大学数学与统计学学院教授。博士毕业于中国科学技术大学,曾在乔治华盛顿大学做博士后研究。主要从事网络数据分析和成对比较的研究工作,主持了包含优秀青年基金项目,面上项目等多项国家自然科学基金项目,在Annals of Statistics, Journal of the American Statistical Association, Biometrika,Journal of Machine Learning Research等期刊上发表多篇论文。