报告人:郜云
报告地点:数学与统计学院104室
报告时间:2024年06月19日星期三16:00-17:00
邀请人:陈良云
报告摘要:
Let $ U=U_q(g) $ be the quantized enveloping algebra with a triangular decomposition $U = U^-U^0U^+$. We classify all $U$-module structures on $U^0$ with the regular action of $U^0$ on itself. We obtain that the necessary and sufficient condition for the existence of such modules is that $U$ has to be of type $A_n(n \geq 1)$, $B_n(n \geq 2)$ or $C_n(n \geq 3)$. We also study their module structures and associated weight modules for each type.
主讲人简介:
郜云,加拿大约克大学教授,德国洪堡学者。主要研究兴趣是高维仿射李代数及相关代数的结构与表示理论。