当前位置: 首页 > 学术活动 > 正文
Adaptive AMG for Time-Space Diffusion Equations
时间:2024年05月31日 23:54 点击数:

报告人:岳孝强

报告地点:腾讯会议ID:795335883 密码:5512

报告时间:2024年06月01日星期六19:30-20:15

邀请人:

报告摘要:

In this talk, we construct a fully discrete scheme of the linear FE method in both temporal and spatial directions, derive many characterizations on the coefficient matrix and numerically verify that the fully FE approximation possesses the saturation error order under L2 norm.  We present an estimation like $1+\mathcal{O}(\tau^\alpha h^{-2\beta})$ on the condition number of the coefficient matrix. Finally, we develop and analyze an adaptive algebraic multigrid (AMG) method with low algorithmic complexity. We reveal a reference formula to measure the strength-of-connection tolerance which severely affect the robustness of AMG methods in handling fractional diffusion equations, and illustrate the well robustness and high efficiency of the proposed algorithm compared with the classical AMG, conjugate gradient and Jacobi iterative methods.

主讲人简介:

岳孝强,湘潭大学教授,目前主要从事偏微分方程数值计算以及并行软件研发等研究工作。在SIAM J. Sci. Comput.、J. Sci. Comput.、Communications in Computational Physics、Computers & Mathematics with Applications、Computers & Fluids等SCI期刊上已发表学术论文30余篇。主持国防基础科研核科学挑战专题、国家自然科学基金青年项目与湖南省自然科学基金青年项目等。现为FASP、JXPAMG、和ParaDiag软件包的主要研发成员,担任美国数学学会《数学评论》评论员。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237