Multilevel additive Schwarz preconditioner for block implicit method applied to parabolic equations
报告人:李世顺
报告地点:腾讯会议:475673208 会议密码:4508
报告时间:2024年05月25日星期六09:15-10:00
邀请人:
报告摘要:
In this talk we explain the time integration of parabolic equations with block implicit methods (BIM). Depending on the size of the block, high-order BIM with A-stability are designed without the need of multiple initial guesses. Similar to Runge-Kutta methods, a BIM can be defined by a tableau including two matrices and two vectors. We discuss a special scheme defined by a positive definite matrix and a positive diagonal matrix; both matrix properties are desirable but not available in Runge-Kutta methods. Moreover, we show that the traditional finite element theory for parabolic problems discretized by the backward Euler or Crank-Nicolson schemes can also be extended to BIM.
主讲人简介:
李世顺,信阳师范大学特聘教授。2011年6月博士毕业于浙江大学数学系。2013年11月-2014年11月美国科罗拉多大学计算机系博士后,2018年1月-2018年12月中国科学院深圳先进技术研究院访问学者。2020年7月-2020年12月澳门大学访问学者。研究方向为区域分解方法和并行算法。目前主要研究基于高阶时间格式的时空并行区域分解算法。相关成果发表在SISC.,SINUM,NLA,AUM和BIT等期刊上。