JXPAMG: a parallel algebraic multigrid solver for extreme‐scale numerical simulations
报告人:岳孝强
报告地点:腾讯会议ID:823811930 密码:35091
报告时间:2024年04月19日09:30-10:15
邀请人:
报告摘要:
JXPAMG is a parallel algebraic multigrid (AMG) solver for solving the extreme-scale, sparse linear systems on modern supercomputers. JXPAMG features the following characteristics: 1) It integrates some application-driven parallel AMG algorithms, including αSetup-AMG (adaptive Setup based AMG), AI-AMG (algebraic interface based AMG) and AMG- PCTL (physical-variable based coarsening two-level AMG); 2) A hierarchical parallel sparse matrix data structure, labeled hierarchical parallel Compressed Sparse Row (hpCSR), that matches the computer architecture is designed, and the highly scalable components based on hpCSR are implemented; 3) A flexible software architecture is designed to separate algo- rithm development from implementation. These characteristics allow JXPAMG to use different AMG strategies for different application features and architecture features, and thereby JXPAMG becomes aware of changes in these features. We will introduce the algorithms, implementation techniques and applications of JXPAMG.
主讲人简介:
岳孝强,湘潭大学教授,目前主要从事偏微分方程数值计算以及并行软件研发等研究工作。在SIAM J. Sci. Comput.、J. Sci. Comput.、Communications in Computational Physics、Computers & Mathematics with Applications、Computers & Fluids等SCI期刊上已发表学术论文30余篇。主持国防基础科研核科学挑战专题、国家自然科学基金青年项目与湖南省自然科学基金青年项目等。现为FASP、JXPAMG、和ParaDiag软件包的主要研发成员,担任美国数学学会《数学评论》评论员。