We first develop random batch methods for classical interacting particle systems with large number of particles. These methods use small but random batches for particle interactions, thus the computational cost is reduced from O(N^2) per time step to O(N), for a system with N particles with binary interactions. For one of the methods, we give a particle number independent error estimate under some special interactions.
This method is also extended to molecular dynamics with Coulomb interactions, in the framework of Ewald summation. We will show its superior performance compared to the current state-of-the-art methods (for example PPPM) for the corresponding problems, in the computational efficiency and parallelizability.
金石,现为上海交通大学自然科学研究院院长,数学学院讲席教授。他同时担任上海国家应用数学中心联合主任与上海交通大学重庆人工智能研究院院长。他是美国数学会首批会士,美国工业与应用数学学会会士,和2018年国际数学家大会邀请报告人,并于2021年当选为欧洲人文与自然科学院(Academia Europaea)外籍院士与欧洲科学院(European Academy of Sciences)院士。他的研究方向包括科学计算,动理学理论,多尺度计算,计算流体力学,不确定性量化,机器学习与量子计算等。