报告人:李利平
报告地点:腾讯会议ID: 153-517-398
报告时间:2024年03月13日星期三19:00-20:00
邀请人:扶先辉
报告摘要:
In this talk we describe representations of certain combinatorial categories of type \mathbb{N}^{\infty}, including the poset of positive integers with respect to division, the orbit category of the group (\mathbb{Z}, +), the category of finite acyclic groups and injective homomorphisms, and the opposite category of the category of finite acyclic groups and surjective homomorphisms, etc. We introduce a special norm on the object sets as well as certain shift functors, and show that homological degrees of representations presented in finite degrees are bounded by their first two homological degrees. In particular, the category of representations presented in finite degrees is abelian.
主讲人简介:
李利平,湖南师范大学数学与统计学院教授、院长。主要研究领域为范畴表示论与表示稳定性理论,在无限组合范畴表示理论的同调方法、一般线性群的同余子群的同调群的线性稳定界限、范畴代数的诺特性判别标准等问题上取得重要成果,被Notices AMS综述文章誉为表示稳定性理论开拓者之一。在Adv. Math., Trans. Amer. Math. Soc., Selecta Math.等期刊发表论文30篇,主持多项国家基金,多次担任美国-以色列双边基金会、以色列科学基金会项目评审专家。