The McCarthy-Bergman spaces of Dirichlet series and two kinds of integral operators
报告人:晏福刚
报告地点:腾讯会议ID:254161885 密码:60151
报告时间:2023年12月21日星期四08:30-09:30
邀请人:
报告摘要:
In this talk, we will introduce the general p-McCarthy-Bergman space \mathcal{A_{\alpha}^p} of Dirichlet series and study the function theory on them.
We will study the boundedness of generalized Hilbert operators H_g on\mathcal{A_{\alpha}^p}.Particularly, it is shown that H_g is bounded on \mathcal{A_{\alpha}^p} if and only if g belongs to a mean Lipschitz space of Dirichlet series.Furthermore, the Volterra operator on \mathcal{A_{\alpha}^p}is also studied. This talk is based on a joint work with Prof. Kunyu Guo and Dr. Xiangdi Fu.
主讲人简介:
晏福刚,重庆大学数学与统计学院准聘副教授。主要从事泛函分析领域的解析函数空间理论及算子理论方面的研究,研究成果发表在J. Funct. Anal.、Sci. China Math.、J. Operator Theory等期刊。