当前位置: 首页 > 学术活动 > 正文
Phase transition for the smallest eigenvalue of covariance matrices
时间:2023年11月28日 15:16 点击数:

报告人:鲍志刚

报告地点:腾讯会议ID: 684217931

报告时间:2023年11月29日星期三14:00-15:00

邀请人:胡江

报告摘要:

In the study of extreme eigenvalues of Wigner matrices and the largest eigenvalue of sample covariance matrices, it has been established that a weak 4th moment condition is necessary and sufficient for the Tracy-Widom law to hold. In this talk, we will show that the Tracy-Widom law is more robust for the smallest non-zero eigenvalue of the sample covariance matrix. We will specifically illustrate a phase transition from the Tracy-Widom distribution to a Gaussian distribution when the tail exponent of the matrix entry distribution crosses the value of 8/3. This talk is based on a joint work with Jaehun Lee and Xiaocong Xu.

主讲人简介:

Prof. Bao is an Associate Professor in Department of Mathematics at Hong Kong University of Science and Technology. In general, he is interested in Probability, Statistical Physics, and High-dimensional Statistics.

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237