报告人:张二川
报告地点:腾讯会议ID:907601874
报告时间:2023年11月24日星期五10:00-11:00
邀请人:陶辰
报告摘要:
Geodesics are of fundamental interest in mathematics, physics, computer science and many other subjects. The so-called Leapfrog Algorithm was proposed in Noakes 1998 (but not named there as such) to find geodesics joining two given points on a path-connected complete Riemannian manifold.
In this talk, we will discuss Leapfrog's convergence rate and the relationship with the maximal root of polynomial of degree n-3, where n (n > 3) is the number of geodesic segments. This talk is based on joint work with Prof. Lyle Noakes (UWA).
主讲人简介:
张二川,于2020年获得澳大利亚西澳大学(The University of Western Australia)数学博士学位,现任澳大利亚伊迪斯科文大学(Edith Cowan University)博士后研究员。主要研究方向为计算机视觉,模型拟合的鲁棒性,几何分析,流形优化,数值分析,机器学习等,近年来在SIAM J. Numer. Anal., Appl. Math. Comput., Adv. Comput. Math., Commun. Nonlinear Sci. Numer. Simul. 等主流数学期刊和计算机视觉顶级期刊IEEE TPAMI, 计算机顶级会议CVPR, NeurIPS发表学术论文。