Quasicrystals, related to irrational numbers, are important space-filling structures without decay nor translational invariance. How to numerically compute the incommensurate system presents a big challenge. In the past years, some accurate and efficient methods of quasicrystals have been proposed. In this talk, we will review the recent development of these methods, including periodic approximation method, projection method, and finite point recovery method. The corresponding convergence analysis will also be reported. If time allows, we will introduce some applications by using these numerical methods, including soft-matter quasicrystals, grain boundaries, quasicrystal phase transition, quasiperiodic homogenized problems, quasiperiodic Schrodinger systems.
蒋凯,湘潭大学教授,博士生导师,入选国家高层次青年人才,主要从事准晶数学和计算方面的研究,在准晶算法创新和交叉应用方面取得了一系列进展。近年来,在Proc. Natl. Acad. Sci.、SIAM J. Sci. Comp.、SIAM J. Appl. Math.、J. Comp. Phys.、Phys. Rev. E、Soft Matter、CSIAM Trans. Appl. Math.等国期刊发表论文多篇。获湖南省杰出青年基金资助,中国计算数学学会优秀青年论文一等奖,主持国家自然科学基金面上项目2项、青年基金1项。