当前位置: 首页 > 学术活动 > 正文
A geometric Gauss-Newton method for least squares inverse eigenvalue problems
时间:2023年06月19日 16:52 点击数:

报告人:白正简

报告地点:学院2楼会议室

报告时间:2023年7月1日 9:30-10:30

邀请人:徐英祥

报告摘要:

In this talk, we consider the least squares inverse eigenvalue problem of reconstructing a linear parameterized real symmetric matrix from the prescribed partial eigenvalues in the sense of least squares, which was originally proposed by Chen and Chu [SIAM J. Numer. Anal., 33 (1996), pp. 2417–2430]. We provide a geometric Gauss-Newton method for solving the least squares inverse eigenvalue problem. The global and local convergence analysis of the proposed method is established under some assumptions. Also, a preconditioned conjugate gradient method with an efficient preconditioner is proposed for solving the geometric Gauss–Newton equation. Finally, some numerical tests, including an application in the inverse Sturm-Liouville problem, are reported to illustrate the efficiency of the proposed method.

主讲人简介:

白正简,厦门大学教授、博士生导师,教育部新世纪优秀人才支持计划入选者、福建省杰出青年基金获得者。2004年博士毕业于香港中文大学,曾在新加坡国立大学和意大利Insubria 大学作博士后和访问学者。主要研究方向为数值代数、特征值问题及其逆问题、稀疏优化、矩阵流形上的优化算法及其在数据科学中的应用等。曾主持国家自然科学基金面上项目和福建省自然科学基金项目。在SIAM J. Matrix Anal. Appl., SIAM J. Numer. Anal., Numer. Math., Inverse Problems, J. Sci. Comput. 等本学科主流期刊上发表学术论文40余篇。曾获得福建省科学技术奖二等奖。

©2019 东北师范大学数学与统计学院 版权所有

地址:吉林省长春市人民大街5268号 邮编:130024 电话:0431-85099589 传真:0431-85098237