报告人:李谷川
报告地点:数统楼二楼会议室
报告时间:2023年05月27日星期六16:30-17:30
邀请人:陈亮
报告摘要:
Chromatic homotopy theory uses the algebraic geometry of smooth 1-parameter formal groups to separate stable homotopy theory into periodic layers. The 1st layer recovers the image of Adams’ J homomorphism and the real Bott periodicity of the real topological K-theory KO. In this talk, I will present a generalization of the real Bott periodicity of KO to general layers at prime 2. The proof takes inspiration from the breakthroughs of Hill—Hopkins—Ravenel’s solution to Kervaire invariant one problem. This is based on joint works with Zhipeng Duan, XiaoLin Danny Shi, Guozhen Wang, and Zhouli Xu.
主讲人简介:
李谷川,北京大学助理教授,博士毕业于美国西北大学,先后在丹麦哥本哈根大学和美国密西根大学安娜堡任博士后。主要研究方向为代数拓扑,研究成果在Advances in Mathematics等期刊发表。